0% Complete
صفحه اصلی
/
بیستمین همایش سالیانه بیماری های شایع گوارش و کبد کودکان ایران و دومین همایش بین المللی چاقی کودکان
AI-Driven Algorithms for Childhood Obesity Risk Prediction: Integrating Clinical Data and Lifestyle Factors
نویسندگان :
Ladan Soltanzadeh
1
Ali Mirzaee AghGonbad
2
Shanli Mirzaee
3
1- دانشگاه ارومیه
2- دانشگاه تبریز
3- ارومیه
کلمات کلیدی :
Artificial intelligence،Machine learning،Pediatric obesity،Childhood obesity،Clinical data،Lifestyle factors،Risk prediction،Early detection،Prevention strategies
چکیده :
Background and Aim: Childhood obesity is a critical global health challenge linked to cardiovascular diseases, type 2 diabetes, and metabolic syndrome, with long-term impacts persisting into adulthood. Traditional statistical models often fail to capture the complex interplay of genetic, clinical, and lifestyle factors. AI-driven algorithms offer improved risk prediction by integrating high-dimensional clinical data and lifestyle variables, enabling early, personalized interventions. This study aims to develop and evaluate AI models for early obesity risk prediction to enhance prevention strategies. Methods: A systematic review (2020–2025) analyzed 38 studies from PubMed, Scopus, and Google Scholar using keywords like "artificial intelligence," "childhood obesity," and "lifestyle factors." Inclusion criteria focused on original research, systematic reviews, and meta-analyses involving children (0–18 years). Data extraction included AI methodologies (e.g., neural networks, random forests), clinical variables (BMI percentile, family history), and lifestyle factors (diet, physical activity). Quality assessment utilized PRISMA and QUADAS-2 tools. Results: AI models achieved 78–89% accuracy and AUC values of 0.85–0.92, outperforming traditional methods (AUC: 0.72–0.79). Key predictors included BMI percentile (92% of studies), parental obesity (68%), and sedentary behavior (improved accuracy by 12–15%). However, only 21% of studies validated models across diverse populations, and complex algorithms often lacked interpretability frameworks like SHAP or LIME. Conclusion: AI-driven algorithms demonstrate strong predictive performance for childhood obesity but face challenges in generalizability and clinical interpretability. Future research must prioritize equitable data collection and explainable AI techniques to enable actionable, personalized interventions and reduce long-term health burdens.
لیست مقالات
لیست مقالات بایگانی شده
The Efficacy and Safety of Transjugular Intrahepatic Portosystemic Shunt (TIPS) in Pediatric Portal Hypertension: A Meta-Analysis of Individual Patient Data
Roghayeh Faraji Akhijahani - Aydin Mahmoud Alilou - Parinaz Mahmoud Alilou - Amir Reza Bana Nasli - Amir Hossein Eskandari - Asal Khaksar Kolvanagh - Pouria Shieeh - Alisan Khodayarlo - Sina Manouchehrnia - Sana Nasirpour - Meysam Najafi - Reza Rostami - Pardis Pour Ali
The Impact of Early Diagnosis and Gluten-Free Diet on Pediatric Celiac Disease Outcomes: A Prospective Cohort Study (2020–2023)
Aydin Mahmoud Alilou - Roghayeh Faraji Akhijahani - Parinaz Mahmoud Alilou - Pardis Pour Ali - Pouria Shieeh - Alisan Khodayarlo - Sina Manouchehrnia - Sana Nasirpour - Meysam Najafi
How Nutrition and Daily Habits Influence Childhood Obesity: A Review
Baharak Aghapour
Effects of Disinfection By-Products in Drinking Water on Children's Health: A Focus on the Digestive System and Liver
Amir Mohammadi - Saeed Hosseinpoor - Zahra Atafar - Solmaz Lalehzari
The Role of Virtual Space in the Prevalence of Childhood Obesity and Healthy Technology-Based Solutions: A Narrative Review Study
Parvin Babaei - Narges Salavati - Elham Mohammadi
The Effect of Exercise on Sleep Disorders in Obese and Overweight Children: A Systematic Review
Zahra Abdollahi - Parvin Babaei - Marzie Danaei - Ali Kheshtzar - Hossein Zamani
Gastric Perforation Due to Inappropriate Heimlich Maneuver Following Foreign Body Ingestion
Fatemeh Pazhouman - Amirhossein Moussavi moghanjougi - Khadijeh Elgeztin - Ameneh Elgeztin
Title: "Addressing Childhood Obesity: A Comprehensive Review of Interventions, Policies, and Emerging Trends
Maryam Maghsoodlo
Optimizing Prevention and Treatment of Chemotherapy-Induced Nausea and Vomiting in Pediatric Cancer Patients: A Systematic Review and Meta-Analysis
Yousef Tavakolifar - Aydin Mahmoud Alilou - Parinaz Mahmoud Alilou - Amir Hossein Eskandari - Amir Reza Bana Nasli - Asal Khaksar Kolvanagh - Alisan Khodayarlo - Sina Manouchehrnia - Pouria Shieeh - Sana Nasirpour - Meysam Najafi - Reza Rostami - Pardis Pour Ali
Maternal Body Mass Index during Pregnancy: Effect on trace elements Status
Masoomeh Gholizadeh - Saeid Ghavamzadeh
بیشتر
ثمین همایش، سامانه مدیریت کنفرانس ها و جشنواره ها - نگارش 42.4.2